Какие могут быть проблемы в данных? Как вы бы их исправляли?
В данных могут быть ошибки, дубликаты, пропущенные значения.
🔹Ошибки могут быть связаны с человеческим фактором, например, невнимательностью, или вызваны сбоями в работе оборудования, записывающего какие-либо показатели. Чтобы исправить ошибки, нам нужно выяснить, чем они были вызваны. После этого можно будет выбрать верную стратегию.
Распространённым типом ошибок являются неверные значения. Поэтому необходимо проверить, что данные не противоречат своей природе. Например, цена товара не может быть отрицательной.
🔹Дубликаты в данных следует удалять. Найти их и удалить можно, например, с помощью Pandas, методов duplicated и drop_duplicates.
🔹Неверные типы значений могут испортить анализ и дальнейшую работу с данными. Например, некоторый показатель записан в виде строк, хотя нам было бы предпочтительнее работать с ним как с типом float. Нужно привести все типы к требуемым. Даты и время можно перевести в объекты datetime.
🔹Обработка пропущенных значений также требует понимания природы данных. В целом, тут есть несколько основных методов: ▫️удалить объекты с пропусками, ▫️заменить пропуски на среднее значение, медиану или моду, ▫️провести множественную импутацию данных (MICE).
🔹Также стоит провести поиск аномалий (выбросов) в данных. В зависимости от ситуации, аномалии можно отфильтровать, скорректировать или проанализировать отдельно.
Какие могут быть проблемы в данных? Как вы бы их исправляли?
В данных могут быть ошибки, дубликаты, пропущенные значения.
🔹Ошибки могут быть связаны с человеческим фактором, например, невнимательностью, или вызваны сбоями в работе оборудования, записывающего какие-либо показатели. Чтобы исправить ошибки, нам нужно выяснить, чем они были вызваны. После этого можно будет выбрать верную стратегию.
Распространённым типом ошибок являются неверные значения. Поэтому необходимо проверить, что данные не противоречат своей природе. Например, цена товара не может быть отрицательной.
🔹Дубликаты в данных следует удалять. Найти их и удалить можно, например, с помощью Pandas, методов duplicated и drop_duplicates.
🔹Неверные типы значений могут испортить анализ и дальнейшую работу с данными. Например, некоторый показатель записан в виде строк, хотя нам было бы предпочтительнее работать с ним как с типом float. Нужно привести все типы к требуемым. Даты и время можно перевести в объекты datetime.
🔹Обработка пропущенных значений также требует понимания природы данных. В целом, тут есть несколько основных методов: ▫️удалить объекты с пропусками, ▫️заменить пропуски на среднее значение, медиану или моду, ▫️провести множественную импутацию данных (MICE).
🔹Также стоит провести поиск аномалий (выбросов) в данных. В зависимости от ситуации, аномалии можно отфильтровать, скорректировать или проанализировать отдельно.
#машинное_обучение #предобработка_данных
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.
Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.
Библиотека собеса по Data Science | вопросы с собеседований from ms